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SUlIARY

It is shown that if in an economy each consumer has a

fixed income and acts so as to maximize a concave, continuous

and homogeneous utility function, then both a social welfare

and a community utility function exist.



AGGREGATION OF UTILITY FUNCTIONS

1. Introduction. The concepts of economic equilibrium

and aggregation of utilities have been discussed separately in

various papers. While equilibrium has been shown to exist under

very general assumptions (see [i]), the community revealed pre-

ference may, under these same assumptions, possess intransiti-

vitie3; in which case one knows a priori that a community (or

aggregate) preference ordering does not exist.

An apparently related question is that of a community

pseudo-utility (or social welfare function). There we ask

whether there is an explicit function of the individual's

utilities (and independent of prices) which is maximized at

equilibrium.

. The purpose of this paper is to show that if every member

of a community has a fixed income and acts according to a con-

cave, continuous and homogeneous utility function then both a

community utility and a social welfare function exist. Thus one

is able to define, unambiguously, the index of the community

standard of living as well as the price index.

For the reader who is interested in practical calculations

of equilibrium distributions and prices, these are shown to be,

in our model, the primal and dual variables of a concave pro-

gramming problem with linear constraints. With the objective

function given explicitly in terms of the individual's utilities

one can use any of the known methods of concave progranmming to
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calculate the desired quantities.

Our basic tool is the saddle point theorem for concave pro-

gramming (see for example Theorem 1 of [(4). We do not, however,

requIre the functions in question to be differentiable.

2. Definitions and Assumptions. In the model to be dis-
cussed we have m buyers B1, .,* B. and n goods GmI, .. #. Gn

A bundle of goods is a vector x - (i "'I en) in real n-space

with ýj ý 0 for each J; tj represents a quantity of Gj.

We further assume that each Bi has a fixed positive income

13, and that we have chosen our monetary unit in such a manner
m

that 1 13 - 1. Finally, each buyer, B., has a real valued

non-constant utility function u,(x) defined for all bundles

x, with each ui being concave, continuous, homogeneous of

order 11 and ui(x) • 0 for all bundles x.

Before proceeding further an explanation of the above is

called for. The requirement of fixed income, is of course not

as general as one would wish; it has however wide applications

and it is this assumption, together with homogeneity, which en-

ables us to acccmplish the tasks outlined in the Introduclon.

The fact that if in 1he above model we remove the require-

ment that each u. be hatogeneous then the oounity iemend need

not be rational is well known. One need not go very far to con-

struct examples with an intransitive cooummity preference.

For a given set of non-negative prices p - (rl' ".000 u)

ISee Section 3.
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the d of Bi, denoted Di(p), is the set of all bundles

which maximize B.'s utility without exceeding his personal

budget. More formally:

D,(p) mlxlui(x) is maximal subject to: x_> 0 and xp <_ p2

In general, D,(P) may be the empty set; however when prices are

all positive it follows from the continuity of ui that D,(P)

is non-empty. We also define tie community demand to be

D (p) - x - Z xi, xi c Di(p) for all i - 1, ... , m .

In words, D (p) is the set of all those bundles that are demand-

ed at prices p, by the community as a whole.

The comrundty-Dseudo-utility function \Y, denoted C.P.U,

is defined by

Ila

for every collection of m bundles x1 , ... , xm.

The community utility function u, denoted C.U., is defined

by

xp is the inner product of the vectors x and p, while
x > 0 means that every component of x is non-negative.
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u(x) -sup [jt(x 1, .*ixm are bundles and MEXi ý x 31.

Our goal is to demonstrate, among other results, that u is a
true aggregate utility function and that Y is a social welfare
function for the model under consideration. The latter result
is given in Theorem 3* while the former means that for every set
of non-negative prices p,D (p) is precisely the set demanded
with utility u and income 1. Formally, we must show that if

p - (Tr, ... , u) 0 then

D - {x u(x) is maximal subject to x) 0 and xp (l I

The principal results of this paper are:

Theorem 1. The function u is a true aggregate utility
function for the model.

Zgran 2. It x a D*(p) and u(x) -V(x 1 , ... , X) then
xi e Di(p) for i - 1a I# ., a. Conversely, if xi c DI(p) for
i- 1, ... , m and x - Z xi then u(x) - Y(xl,go#.., X).i,.1

TheorM 3. If x is a bundle with each component positive
and u(x) - ft(xl, ... , x.) then there exist price p such that

x c D*(p).

Theo..%m 1 is self explanatory, Theorems 2 and 3 may be

"-See -,ection 3.
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interpreted in terms of equilibrium properties as follows:

Given a bundle x then the collection of bundles

xI, ... , x. and the price vector p are called an equilibrium

distribution and prices for x., respectively, providing p is
m

a non-negative vector, xi e Di(P) all i - 1, ... , m, Z xi i x,i-I
and px < 1. This is the standard definition of equilibrium

when x represents quantities of the goods G1 , ... , 'n avail-

able in the economy, i.e. at prices p every buyer has maxi-

mized his utility, there is sufficient supply of each goods in

the economy to meet the demand and only free goods (those with

zero price) can be in oversupply. Also, for a fixed bundle x,

a collection of bundles xl, ... , xm is called a m zing

distribution for x providing u(x) - Y(xl, ... , x").

Theorems 2 and 3 are then equivalent to (as is seen trivi-

ally by using Theorem 1 and comparing the two expressions for

D (p))

Theorem 2*. If for the bundle x there exists an equili-

briunr distribution and prices then every maximizing distribution

is an equilibrium distribution. Conversely, if x,, ... , xm

is an equilibrium distribution for the bundle x then it is a

maximizing distribution.

Theorem 3*. If x is a bundle with each component posi-

tive then every maximizing distribution is an equilibrium distri-

bution.

At first glance one may wonder why Theorem 2* does not say

that every maximizing distribution is an equilibrium distribution.



This is simply not true. For, as is the case when x is iden-

tically zero, the set of equilibrium distributions is empty

while the set of maximizing distributions, in view of the con-

tinuity of the C.P.U., is never empty. Theorem 3* does, of

course,guarantee that an equilibrium distribution exists in

case x is positive. It should be mentioned that Theorem 3*

has been proved, under much weaker assumptions elsewhere (see

[1]). One of the reasons for ita inclusion here is that other

methods of proof depend on general flxed-point theorems while

here use is made, essentially, of separation, theorems for convex

sets.

Finally, certain uniqueness questions can be answered

rather easily in the framework of our formulation. Equilibrium

priies need not be unique without further assumptions, and cer-

tainly one cannot expect equilibrium distributions to be unique.

However, the satisfaction of each buyer at equilibrium, or the

pay-off is unique.

Theorem 4. Suppose that for a given bundle x there are

two equilibrium price vectors p and q with X1, S., xm

and yls ..., y. being the corresponding equilibrium distribu-

tions. Then ui(xi) - ui(yi) for every i-l, ... , m.

3. Proof of Theorems. We shall first prove several lemmas.

All matrices and vectors discussed have real components and we

use the conventional notation for matrix multiplication. If

A - (aij) is an m x n matrix, x- ((I, "
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y - (r, ... , r) are vectors, then xA stands for the vec-

m m
tor ( 2 e Ia1ilp "" 2 ýi- in) and Ay stands for the vector

n n n
( 2 lia, ... , z ) while xAy stands for the inner

product of xA and y (or equivalently x and Ay) i.e.
n m

xAy =J-Z i-Z I JaiJ A vector inequality means that the same

inequality obtains componentwise. By R+k is meant the set of

real k-tuples x 10•' "'.. ýk) with i- > 0 -1, ... , k. A

function R -k R (R being the set of real numbers) is

concave providing 0(,x + (1-))y) > A O(x) + (1-A))(y) for all

x, yc Rk and all A in the real interval [0, 11; 0 is posi-

tivety homogeneous of order r (or, for short, r-homogeneous)
providing r is a real number and O(Ax) - )ro(x) for all x e Bk

and N > 0; when saying 0 is continuous we shall always mean

kwith respect to the relative topology of R+ as a subspace of

Rk. We also say that * is quasi-concave providing

S+ (lA)y) ý a whenever O(x), 0(y)> cx and *A e [0, 1].

Lemma 1.

Let A be an m x n matrix, b c Rn, 0 : W+ -4 R a con-

cave function. Suppose A, b have the property that for some

x e we have xA < b, read suppose x 0  has the property that

ON×0) is maximal subject to xO) O, x 0 A < b.

Conclusion: There is a vector yo c R+n such that

(1) xOAyO - by 0  and

(2) (x 0)> (x) + (x 0 - x)Ay0 for all x e P.
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Proof: By m-he aximality of O(Xo) the inequalities:

X ER•+

xA(b

(xo) - W(x) < 0

have no solution. Whence it follows (see Theorem 1 of [2] ) that

there is a y eR and a real number T)ý 0 such that y and

T) are not both zero and

xAy - by + T [O(xo) - O(x) 1 0 for all x c l.

If 1 - 0 then y + 0 and xAy• 0 for all x_> O, but we

assumed that xA < 0 for some x.> 0 henice xAy < 0 unless

y - 0, both of which are impossible. Thus T_> 0, let yo -

than Yo e i+ and

xAyo- byO + (xo - O(x) T Op foral xn

or

O(x 0)> t(x) + (b -xA)yO for an x e Fe
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Letting x - x0 in the above we get

x 0 Ay0 _> by0

but oA b an yo e P, hence xoAyo < byo Thus

xo0 Ayw by0 , completing the proof.

Lemma 2.

Suppose a, y, y are real numbers with the property that

(3) a(l-k) y(l-X), for all A in some open

neighborhood of I.

Then ap = y.

Pro: For O< A < I we have

\ 3 > -Y

while for 1 < W we have

a< 'Y

But, lim - p (as may be seen, for instance, by dif-
x -0 1 1-?-

ferentiating the numerator and denominator of the quotlent I-A
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with respect to A). Thus y _ acp <-y and a1-3y.

Lam 3.
If A, b, o, x0  satisfy the assumptions of Lemma 1 and in

addition 0 is 1-hoogeneous then O(xO) m xoAy0  and, thus,

(2) may be written

(3) xAyo) O(x) for all x e RFP

Proof: Let X be a non-negative real number. In (2) let

x - Xox, we then have

O(XN) > ¢(Axo) + (xo-AxO) Ay0

-o0(X) + ('-A) xoAyo

or (I-W) O(x&> (1A) xoAyo

Applying Lemma 2 we have *(xo) - xoAYO.

iauma ~4.
m

Let 0I1 **", Pm be positive numbers satisfying Z 0i 1.

Then for any a - (ac1 , ... , am) e we have

m m M m
(4) ir a.' a T P (where a- z ai)imI iml iml
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and equality holds in (4) if and only if "£ - 4 0,

Proof; If a w 0 (i.e. a - 0) then the conolusion is
trivial. Suppose a > o, let !, and conider the func-

tion f(c) - r defined ror all c - (7*, ... , * ) 'Y

for which Z - 1. This function is continuous on a compact

set hence achieves its maximum at co - (y1, .. , 0y0). Note

that co > 0 for otherwise f(cO) - 0 which clearly is not

the maximum value of f. But f is differentiable, hence all

partial derivatives of f are zero at co, as are all partials

of

m m-1 m-i
log [f(c)] - ' Pi log Ti- Z log 'y1 + 0M log (i- z 7i)i-i ji-ii-

Thus

- - 0 i-l, ... , m-I

or

i " for i-l, ... , m

But

m m 0

i-li -
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thus

0

This shows the maximum of f occurs at the unique point

c (1 0•.* am), as was to be proved,

L 5.

Let F - R+ -* R be continuous, quasi-concave, 1-homogeneous

and O(x) > 0 for all x e + . Then the following are equiva-

lent

(i) • is concave

(ii) * is non-decreasing (i.e. *(x).) 0(y) if x > y)

(111) 0 (x + y).ý #(x) + 0(y) fro all x, y e IP

(iv) O(x) . 0 for a x t RP or O(x) > o for al x > 0.

jtragt. We shall show that (i) implies (ii), (ii) implies

(iii), (iii) implies (iv) and finally (iv) implies (i).

Suppose 0 is concave and for some x" y f j+ we have

x <_y and O(x) > 0(y).

Let

zk" ky + (1-k) x - k(y-x) + x e + , k1., 2,....
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Then

y Z + (x - x

Thus by concavity

0(y) 1k ( + (1 -1) 0(x)

or

kC [O(y) O- ) + O(x) > O(zk) >0

This is clearly a contradiction, since k [y)- Ox)may be

made arbitrarily close to - oo by chosing k sufficiently

large. Thus 0 is non-decreasing.

Secondly, suppose 0 is non-decreasing. If O(x) and

O(y) are both positive then, using quasi-concavity of 0, and

since

we have

\W+ ))+>(y) 1.) O¢x)+O¢y) 4(y

> 1.
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Thus *(x + y)_> O(x) + 0(y).

If, then, *(x + y) < O(x) + 0(y) it must be that either

O(x) - 0 or 0(y) - 0 but this would contradict the fact that

0 is non-decreasing. We have thus shown that (ii) implies

(iii). To prove that (iii) implies (iv), suppose there is an

x > 0 with O(x) 0. Now for any y) 0 there is a t > 1

such that

z . jX + (l-P)y C FP

(if y < x then z e re for all B ._ O0 otherwise letrain T- > )
y - ( i, .. *, TI), x . ( p, ... , t) and let p - mi T .

Now

1 1

x-- z + (a -) y

and thus

u \

hence *Q" y) . -u 0(y) - 0, and 0(y) - O, thus

showing that 0(y) - 0 for all y e . Finally, we show that

(iv) implies (i).

If *(X)- 0 for all x e R+ then 0 certainly is con-

cave. Assuming O(x) > 0 for all x > 0 and i is not con-
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cave we have

O~x+ (I. - X)Y) < x(x) + (1 - X~) 0(y)

for some x, y e Rf and X c (O, 1). Let z X x y then

)(x + z) < O(x) + O(z). As above, if *(x), 0(y) > 0, we would

have (using quasi-concavity of 0) O(x + z) > O(x) + O(z).

Thus, say, O(z) - 0 and we have

O(x + z) < O(x),

Taking a sequence zk converging to z with each zk > 0,

we have O(x + zk) . O(x) + O(zk), but by continuity of 0 we

must also have O(x + z) ý O(x) + O(z). Completing the proof.

Lemm 6.

The C.P.U. 4' in concave and continuous.

Proof. By Lemma 5 we see that each ui is non-decreaslng

so that Y is non-decreasing, 11 is also continuous since each

ui is, and of course •' is 1-homogeneous. It remains to show

that 'r is quasi-concave. Consider the functions f(el, "0") e)

f(x) - r defined for all x > 0 and g(x) - log f(x)

defined for all x > 0. Now if g., denotes the i, k partial

derivative of g then

if i + k and g,,(x) m-
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Hence (see [5] p. 87, No. 35) g is concave and f is quasi-

concave in the interior of but being continuous it must

be quasi-concave over all of I. Now if

f (x " ) <- (YI"'' YM)

then

""(xx + (1-))y1 ,..., x + (1-A)Ym) In u(Axj + (1-W)Yj]
i-I

2±'~ [)xuj(Xj) + (1-)x)uj(yj)j > T4 (xl, ... ,

completing the proof.

;m 7.

The C.U. function u is concave, continuous, 1-homogeneous

and u(x) 0 all x Rc

Proof. That u(x) ' 0 for all X c + is trivial. To

show homogeneity, let A > 0 and let

u(x) -' (xI, ... , XM), u(Nx) -I/(YL' 'YM)

then

m m
1.xi < j, z Yi <x.
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Thus

Z Axi<x and Z x ,

whence it follows that

S(•xl'"''' ) <-4r (Y," "'' YM)

and

But 'f is 1-homogeneous so

x (x1, ", x.) <- Y (Y., ""' Ym) <- • ' (x1, "'" xm)

or

),u(X) <_ U•1) 4" Xulx)

and

u(,x) - Wu(x) .

We show ,iext that u is super-additive (i.e. for any x, y eR

u(x + y) ý u(X) + u(y)).
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1e t

u(Y) -4' (yi, ... ,

Hence

m m
z x z Y < y

thus

m
z (x i + Y1 ) < x + y

whence

U(x + Y)> * (xi + yl,, xM + Y)

but by Lemma 6 4 is super-additive thus

u(x + y) " "• (xj, *..., x,) + Y (Y, ... ' Y) " u(x) + u(y).

It is clear that homogeneity and supecradditivity of u suffice

to show that u is concave; it is of interest, however, and

not difficult to demonstrate, that u is also continuous. Let

xk be ii in +I converging to x in . Let
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(xx, .. , k and let u(x) - , .. , . Since

the k are bounded we may assume, taking a subsequenue if
Xc

necessary, that the xk converge to Ri in Rn+ Hence, by

continuity of I , the f (xl, . converge tom km

Bu ( Y- x hence 2 Ri < x and thusi~l
S(N' "''' X~ ~R) <-- (xl, "''' xm) . We thus see that

fimi u(xk) < u(x).

Let x ... , ( .. ; we may

assume that k > 0 for all k whenever • > 0. Let

A- rain Ijl (if x - 0 let k= 1, all k),

P.10

then Xk > 0 and Xk converge to 1. But kX k xk so that

X < x1  k (because we may assume that mx - x). Thus
iml -i-i

Y('k•, ...,4'' )%kx A• 'VX, ... , xM) <_If(•, ..

and, since the Xk converge to 1, we have

Y (x , a.., Xm) - u(x) < l__ u(xk)

Hence u(x) - lir u(xk), completing the proof.k
We now proceed to prove Theorems 1 - 4.

m
Proof of Theorem 2. Suppose xi c D,(p) and z xi x.



P-1363
7-14-58

-20-

By Lenma 3 we know there exist al, ... , a., all non-negative,

such that for each i-l, ... , m we have

(5) '101 a~xip ui(xi)

(6) xtp <_ sK

(7) alyp u,(y) , for every y e n

Note that a. > 0 for each i=l, ... m m, because otherwise we

would have 0,(x) - 0 for all x; hence i xlp. Now

u(x) > (xIS *..., x)

if

u(x) - 4Y (y ."# Ym) > T (x1  ..."P Xm)

then

S• m ± m (m xP)•
ir~~~~~~~~ ~ ~~ (ai)i>i u (i] >r[,x) 7r axp

-- i-I - i-i

i-1

thus

m Pi 13T(yjp) >i pi.-1-
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But

: YL <_x x
i-i

hence

Ž yip < pxzm
i~l

which contradicts Le=ma 4. Thus u(x) - if (xl, ... , x).

Now if x e D*(p) and u(x) - P (xl, ... , xm), let

0' 0
x 'i where x c DI(p). Using (51) - (7) and the fact that

S(Xl, ... , xm) -4 (xl, ... , 0) (see first part of this proof)

we have

S(aj,)i - I(x ) - i [ui(Xi)] < r [IP]
i~l im'l li inilu -:~l1

Hence

J Pi i < r (xP) i

m im

but ','x, K x so that Z xlp < xp 1 1, and thus by Lemma 4
i-I i-I

xip - Si ard ui(x,) - aipi

Hence if y c R+ , and yp < then

Uj(y) < %yp <_ aili - u,(xj)
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Thus x. C D (p) for each i-1, .,., m. As was to be shown.i

Proof of Theorem 3. By Lemma 1 there exists q E R

such that

m
q Z xi - qx

i-i

and

m >m

u ) >T[u±(yl)] + q'(x1 -

for every YI' **"' Y. such that yi E RA.

Y, +

Let Yi A xi, where A 0 then

3 p1  m
(-•) v[u,(x,)] > (I-A) q ZX -i qx

thus

qx , F,(x)]•

Let p * -S• then
qx

m rUl (yi)]• mn

(8) 1. + p.z(X) all Y. C +,

For a fixed k, let Y. Xi if i + k, Yk m Xxk where W_> O.
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Thus 1i> Wk + p xk (1-X) hence by Leima 2

S- Pxk for evcry k-l, ... , m .

Now for a given k let, in (8), y71 x1 if i + k and

Yk = x then

(9) > uk(x) +p(xk x) for all X e Rn

nn

Thus, if x F R+ and xp <( 1k XkP then

k
'Ž[ .W I or Uk (x) <- Uk (x;)

Thus xk e Dk(P) for k-l, ... , m.

Proof of Theorem 1. Suppose x c D*(p); we wish to show

that for any y c Ri, if yp < 1 then u(y) < u(x). Let

x- Z X. where x. c Di(p), and let u(y) (yl' .. ' Ym)

hence I yi < y and thus T Yip < yp ý 1. Thus by Lemma 4,
i- -i-i -

and using (5) - (7) we have

U(X) m 1 (lp.dxm 3iaY

W u[ i" ""',) " u(Y)

Hence u(x) > u(y).
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Conversely, suppose x maxiimizes u subject to x> 0,
m

xp•1 . Let u(x) W -(Xl, ... , x.) then Z xi K x. Also
i-I

p + 0, for otherwise u(y) - 0 for all y which is clearly not

the case, thus we apply Lemza 3 which tells us that there is an

1 Ž0 such that

1 px - u - u(X) > 0 and

Spy) u(y) for all y e n+

nMov for any y, .. ' .,m E R+ we have:

m m m i3
(9) 71 p z > U( z Yi) > Y(Yl, ... , YM) 7- • u1 (yi)]i'l - i-I -= I I-

thus
m m u n

(10) P IZ v T for all y,,..0,
1-1 i-i +

Hence for every i-l, ... , m and every A > 0 we have

1 - W _> (1 - X)P x,

thus, by Lema 2, 91 = P Xj
n

Now if y c Rn and yp • Ak then from (10) we get

-~ < P x I+ y( XkP +YP <l
[Uktxk).l

or uk(y) < uk(xk) . Thus x. e Di(P) for all i-i, .. m.

mu
But px - 1 > 1 pi = 1, thus px z Pxi hence x c D (p)

131 i-i
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Proof of Theorem 4. Let p, q be equilibrium price vectors

for the bundle x. Let xI, ... P x. and y,, y ym be their

corresponding equilibrium distributions. Let ai' ai be the

corresponding numbers appearing in (5) - (7). Then a , a± > 0

for every i and

a t3 •• z 2i + Y- + •k<
di a,' ai ~

2+2 Z 
2

Thus, say, i i - 1.

By Lemma 4 we then have

m Pi m 13
hence r ai < rd . But

a iti- u=(x1 ), "aipi - ui(yd)

and by Theoren 2*

7 r(x i m (y
i-I~ Ii
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hence

m 1i mr ai - ai

and by Lemma 4

ai

or au .ED

Consequently u,(x,) -u,(y.) .Q.E.D.
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Conclusion. We have shown that under the assumptions

listed in the first paragraph of Section 2:

(i) A concave, homogeneous and continuous community-

utility function exists.

(ii) A social welfare function is given by • i(xi)
m .,[i- ,)

or equivalently by Pi log ut(xi). This function

is concave hence:

(iii) Equilibrium distributions and prices may be character-

ized as the primal and dual variables, respectively,

of a concave programming problem with linear constraints,

the constraints being the usual market budget inequal-

ities (i.e., the requirement that none of the goods

be over-demanded). The objective function is, of

course, the social welfare function given in (ii).

(iv) While equilibrium prices and distributions need not

be unique, the pay-offs are.
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